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Failures for R:pairabl: Components

Richard E. Barlow and Bernard Davis*

Abstract. A method for analyzing tim e between failure data is
developed . The method uses total time on test plots for a non-
homogeneous Poisson process failure model. Engine failure data is
used to illustrate the method . A graphical method for determining
optimum replacement intervals is presented.

1. Introduction. Most of the statistical literature concerned

with analyzing failure data assumes that observations are independent

and identically distributed . Although engineering reports often pur-

port to give Mean Time Between Failure (MTBF) estimates, the estimates

are, in fact only valid in general if times between failures are

exponentially distributed random variables. Since this assumption is

often not valid , especially for mechanical components, m’re sophis-

ticated techniques are r equired to analyze this type of data. To

focus on the kind of problem we have in mind , we will first consider

some failure data on caterpillar tractor engines. The actual data is

given In the appendix . The data consists of the age of the tractor

at engine failure, the age of the engine at failure, and the calendar

date of the fai lure event.

*Operations Research Center , University of California , Berkeley,
California 94720. This research was supported by the Air Force Office
of Sc ient i f ic  Research under Grant AFOSR—77—3 179.
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Figure 1 shows engine failure removal times on each of 22 trac-

tors as a function of tractor age. The large number of failures at

6000 hou rs was due to a p iston fai lure problem and not a planned

maintenance action. In order to plan maintenance actions, we need a

mathematical model for predicting engine failures as a function of

tractor age as well as engine age. Sections 2 and 3 present a tech-

nique for solving this problem . In Section 4 a graphical method for

determining optimum component replacement based on component life

cycle costing is presented.

2. A Non—homogeneous Poisson Model for Times Between Failures.

In examining 59 engine failures on 22 D9G—66A caterpillar tractors

we found that engine age at failure depended on the operating age of

the tractor when the engine was last p laced in the tractor.  Except

for the original engines in new tractors , engines replacing failed

engines were often repaired engines. Figure 2 is a plot of engine

age at failure versus tractor age when the engine was last placed in

the tractor. Thu s crosses on the y—axis corresponding to x 0 are

ages at failure of the original engines. It is fair ly  clear from

Figure 2 that original engines tend to have a longer mean l i fe  than

repaired engines. The mean l i fe  of original engines is 6149 hours

versus 3241 hours for repaired engines . The standard deviation in

both cases is about 2000 hours .

~ 
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5

Figure 3 shows a total  time on test plot fo r  original (new)

engines and also a p lot for  repaired engines. The fac t  that  the new

engine plot is more strong ly concave indicates that the l ife of re-

paired engines is more nearly exponential. [See Barlow and Canpo

(1975) for a discussion of total time on test plots.]

Analysis of Failure Events from Independent Processes. Intuitive-

ly ,  engine failure processes will depend on both tractor age and engine

age. However , Figures 2 and 3 suggest that tractor age may be the

more significant variable in modelling the engine failure processes.

We assume that the successive failure events of engines, say, in a

given tractor can be described probabilistically by a non—homogeneous

Poisson process. If N (t )  is the number of eng ine failures in

[O , t ]  , for  a particular tractor , then

P [ N ( t )  = k] = 
[ A ( t ) ] k 

e
_Mt)

f or k = 0 ,1,2 , ... where A ( t )  is the mean number of engine fail-

ures in [O,t] . [See çinlar (1975) for an introduction to non-

homogeneous Poisson processes.] Since we do not know A(t) , it must
be estimated from the data. Our approach is to use an appropriate

total time on test plot to make a preliminary model identification.

(The model is the analytic form of A(t) .) A final model identifica—

tion will be made using a Bayesian approach. 

~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _
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The superposition of n independent non—homogeneous Poisson

processes each with mean function , A (t) , will again be a non-
homogeneous Poisson process with mean function nA (t) . Now let each

process run for the same time interval [0,T] . Let

Z(1) < Z (2) i...

be the ordered superposed event times on a conmion age axis, where N ( T )

is the total number of events in [0 ,T] . In Figure 1, if all points

were superposed on the x—axis , the orde r ed values would corr espond

to Z(1)
’s . (In our case, however , we do not actually observe engine

failures over the same tractor age interval [0,T] for each tractor.

We make this assumption in order to derive our theoretical result.)

Let n(u) be the number of processes under observation at trac-

tor (or system) age u . In our example (see Figure 1), n(0) = 22

and n(u) = 22 up to about age 6000 hours at which age it drops to

21, etc. Finally, at age u = 22507 hours , n(u) = 0 . The sca led

total time on test plot for the non—homogeneous Poisson process model

i s a plot of j

Z (~ ) If n(u)du 

~ .versus ~~(N (T))  t I\ L )

f n(u)du

i.
_ 

j.~ ~~~~~~ ~~. 
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for  i = 1,2 , ..., N (T)  . Figure 4 is a Total  Time on Test Plot  of

the data in Appendix 1. We have used linear interpolation to produce

a smooth p lot.  For this data , T = 22507 hours.

The following theorem is the basis for our preliminary model

identification procedure.

Theorem 2.1. Assume that n independent non—homogeneous

Poisson processes are observed on [0,T] where T is fixed . Then,

for O < p < l

him 
Z
([pN(T~~~ 

= 
A~~~(p A (T))

n+= Z (N (T)) A 1(A(T))

- 
A 1(p A (T ) )

T

almost surely. [pN(T)] denotes the largest integer in pN(T)

[Note that n(u) n for 0 < u < T ; i.e., all processes are corn—

pletely observed.]

Proof. Let Y
1
,Y2, 

~~~~~~~~ 

, ... be independent identically

distributed exponential random variables each with unit mean. Let

k
S
k 

= ~ Y . and A (x) = nA (x) . Then
1=1

d — 1/Z
([pN ( T ) ] )  A~ ~

5([pN ( T ) ] )
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where means equal to ~n distribution. Also

z d A ll 
S

[P N ( T ) 1  [p N ( T ) ]
([pN (T)]) \

P [p N ( T ) ]  pn

since A (x) = nA (x) implies
n

A~~~(y) =

Now N ( T )  -
~ almost surely as n -

~~ so th at

S
[ N(T)J 

-
~ 1[pN (T)]

almost surely as n -‘~ . Since EN (T) = nA( T) , we see that

N ( T) 
+ A( T)

almos t surely as n -
~ . It follows that

Z
([ N ( T ) ] )  ~ A~~~(pA (T))

almos t surely as n +

Q.E.D.

If A ( u ) , u > 0 is the intensity function for our failure

x
process then A (x )  f  X(u)du is the expected number of fai lures in

0

~~~~~~~~—— 
.. —= — .

~~~~~~~~~~~~

I-

~~~~~ 
- .

~~~~~~~~ 
. _ _
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[0,xJ - If A(u) = aX aua
~~ , then 

A~~ (pA (T))  
= p1

~~ for 0 < p < 1

In this case A~~ (pA (T ) ) 
is concave in 0 < p < 1 for a > 1 and

convex in 0 < p < 1 for  0 < a < 1 . This does not appear to be a

good model for the plut in Figure 4. If

a—i — 8u
U eX ( u )

1 a-l -8w
J w e

U

then X ( u )  is a gaama intensity function and A 3 (x) will be approxi-

mately linear for large values of x . For this reason, the gaama

intensity function with a > 1 may be a better model for the plot in

Figure 4.

Since the plot in Figure 4 was based on incomplete data (i.e.,

not all tractors were observed for 22507 hours), Theorem ‘.1 does not

strictly app ly. However we can make a valid comparison to a homo-

geneous Poisson process using the following theorem.

A (x)Theorem 2.2. If is nondecreasing in x > 0 and
x —

l x
n(x) <—fn(u)du almost surely, then conditional on N(T) N

0

-~~~-.--~~~
-
...-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ... - “~~~~ —-. 
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~~~~~~ ~~~~~~~~~~~ ~~
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z 
(j)f n(u)du

Z (N (T)) i:N—l

f n(u)du

where Uj.N l 
is the i—th order statistic from N — 1 independent

uniform [0 ,1] random variables. means stochastically greater
\ s t

or equal than.)
1 x

Note that if A (u) is nondecreasing , then A(x) = fA (u)du
0

satisfies the condition of Theorem 2 .2 .  It follows from Theorem 2 . 2 . ,

that if the failure rate is nondecreasing , then the scaled total time

on test p lot will tend to lie above the 450 line (since EUi:N l 
~Figure 4 indicates an increasing failure rate process. The distribu-

tion of crossings of the scaled total time on test p]ot in the case

of a homogeneous Poisson model has been de rived by Bo Bergman (1976).

The proof of Theorem 2 .2  is similar to that of Theorem 2 in Barlow and

Proschan (1969) and will not be given here .

3. A Bayesian App roach to Model Ident i f ica t ion .  In Section 2

we discussed a method for preliminary model identification . On the

basis of Figure 4 and the discussion in Section 2, we could choose a

x
g a a  failure process model; i .e . ,  A (x)  I X ( u ) d u  where0
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a a— l — 8u
(3.1) A (u) = 

U e

( a a—l —8w
j  8 w e dv

U

The parameters a and 8 are to be estimated . Given the model , the

likelihood best summarizes the information in the data concerning the

parameters [c f .  Basu (1975)].

Let n(u) be the number of systems (e.g., tractors) under obser-

vation at age u and N(T) = N , the total number of failures. The

likelihood function , given Z =  (Z(1) 
< Z (2) < < Z~~~) is easily

found to be

z
N

L(a,8 Z) = 

[i~l 
n(Z~ i)) A (Z (j))]exP 

- f n(u)X(u)du

where n(Z(i)
) is the number of systems under observation just prior

to the i—th observed failure and A ( u )  is given by (3.1). Given a

prior density 1T
0

(a ,8) , the posterior density on a , 8 is

L(a,8 I Z)ii (a,8)
I .~.) =

f fL (a , 8 I Z)ir (a ,8)d ad8

by Bayes Theorem . If a d i f fu se  prior; i .e. ,  1T (ci ,8) E c is chosen ,

the ir (ct ,8 I Z)  is proportional to the likelihood funct ion.  For

~~ rT*~ . ~~~~ ---~~~~~~~- ...-.- -~-~~~~~~~
— 

j
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i l lustrat ive purposes we could graph L(a , 6 I Z) for the data of

Appendix 1. The maximum likelihood estimates can be obtained from

contou r p lots of the likelihood function.

4. Graphical Determination of Optimum Replacement Policies.

For our non—homogeneous Poisson process model , A(t) is the expected

number of component (engine) failures in [0,t] . Let c1 be the

average cost of repair ing the componen t and c 2 the cost of buying

a new replacement component. Then, if a new component is bought at

time t , the long run average cost of replacing components is

c1 A(t) + c
C(t) = —i-

t

The numerator is just the expected cost of a life cycle of length t

Let t be the optimum replacement age , if it exists; i.e.,

c,A (t) +
C(t ) = Minimum

t>0
If c

1 
is interpreted as the average time to repair the com-

ponen t and c2 is the average time to replace with a new component ,

then C(t) is the long run average unavailability where an old com-

ponent is replaced by a new component at age t

To determine t
o 

graphically using the scaled total time on

tes t  plot as in Figure 4 , f i r s t  p lot — c
2
/c1A (T ) on the x—axis [ see

Figu re 5] .  (A (T)  is estimated from the data as in the previous

~ 

~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~ 
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section.) Construct a tangent to the scaled total time on test plot

as in Figure 5. The projection of the tangent point on the x—axis

will correspond to a ratio of the form i /N(T) . The solut ion is

Z
(~~~) 

; i.e., t
o 

= Z ( i )  will minimize the average l i fe  cycle cost

per unit time against A (t) estimated (implicitly) by the scaled

tota l time on test p lot .  This solut ion is completely analogous to

that of Bergman (1977) for a d i f fe rent  model.

The following graphical technique is valid if all failure proc-

esses are observed throughout [0,T] and the number of processes ,

n , is large. To verif y the above solution , let p = i /N(T) and

note that by construction

A
1(p A (T) )  

A~~ (p A ( T ) )
c2 

— c2
+ c~A( T) ~ 

+ 
c1

A(T)

for O ’ p < l  . Hence

_______ 

c2
+ 

c1
A (T) ~~~~ c1

A(T)

A
1(pA(T)) — 

A~~~(p A(T))

Now let t = A
1(p A (T ))  and t

o 
= A~~~(p A (T)) so that p =

A ( t )
and p = A(T )

Hence

Pt

~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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c1
A (t) + c2 c

1
A (t) + c

2

which implies t
o 

is the optimum replacement interval. But

to 
= A~~ (p A ( T ) )  — Z ([ N(T)] ) by Theorem 2.1 Hence Z

(~~) will

be (approximately) the optimum replacement age.

Acknowledgement. We would like to thank William Vesely of Nuclear

Regulatory Commission for suggesting this problem and Paul Teicholz of

the Guy F. Atkinson Construction Company for supplying the data.
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Appendix 1. Hours on Tractor and Engine at the Time of Failure and
the Date of Failure

Hrs. on Hrs. on Date of
Tractor Engine Tractor Engine Failure

1 1 8230 8230 06—16—71
2 1 5085 5085 04—16—70
2 2 8501 3416 06—24—71
3 1 3826 3826 10—11—71
3 2 6983 3157 11—10—72
4 1 10950 10950 05—08—72
5 1 6052 6052 06—01—70
5 2 12040 5988 08—21—74
6 1 6367 6367 06—07—71
7 1 7774 7774 08—10—70
7 2 12035 4261 01—11—72
7 3 19520 7485 12—28—73
8 1 4394 4394 08—08—69
8 2 9415 5021 02—24—71
8 3 13069 3654 03—08—72
9 1 10517 10517 09—21—70
9 2 13783 3266 07—12—71
9 3 20970 7187 07—11—73
9 4 20988 18 08—14—73
9 5 22273 1285 03—12—74
9 6 22507 234 04—16—74
10 1 2690 2690 05—08—67
10 2 6922 4232 04—30—70
10 3 10815 3893 10—20—71
10 4 12988 2173 06—14—72
10 5 17751 4763 11—19—73
10 6 19458 1707 08—15—74
11 1 6259 6259 03—26—68
11 2 9994 3735 02—14—72
12 1 5278 5278 06—28—65
12 2 6949 1671 07—26—66
12 3 9484 2535 10—09—67
12 4 14383 4899 03—04—71
13 1 6378 6378 08—01—66
13 2 11374 4996 05—11—72
13 3 12771 1397 01—09—73
14 1 6385 6385 09—14—66
14 2 11359 4974 05—15—70

_ _= —;1
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Hrs . on Hrs. on Date of
Tractor Engine Tractor Engine Failure

15 1 6578 6578 08—03—66
15 2 7860 1282 03—22—67
15 3 9719 1859 05—22—68
16 1 5161 5161 04—15—65
16 2 6332 1171 11—12—65
16 3 11288 4956 11—04—69
16 4 16249 4961 07—11—72
16 5 18780 2531 06—27—73
17 1 6717 6717 10—26—66
18 1 6869 6869 11—01—67
18 2 8790 1921 12—10—68
18 3 13315 4525 05—08—71
19 1 5556 5556 04—03—67
19 2 6293 737 08—09—67
19 3 7679 1386 05—18—68
19 4 9931 2252 12—20—72
20 1 3268 3268 07—30—71
20 2 6091 2823 05—31—72
21 1 4815 4815 01—21—72
21 2 8388 3573 03—12—73
22 1 6150 6150 10—31—69
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